Midbrain auditory neurons integrate excitation and inhibition to generate duration selectivity: an in vivo whole-cell patch study in anurans.
نویسندگان
چکیده
Sound duration can play a pivotal role in the reproductive behavior of anuran amphibians. Here, we report the first whole-cell recordings from duration-selective neurons in the anuran torus semicircularis, in vivo. We show that most short-pass duration-selective cells exhibited short-latency inhibition and delayed excitation. The duration of the inhibition increased with tone burst duration. Hence, for long-duration tone bursts, inhibition overlapped with excitation, reducing or eliminating spikes; no postinhibitory rebound was present. Other short-pass cells, however, showed inhibition only for long-duration tone bursts. Bandpass duration selectivity also involved interplay between inhibition and excitation; inhibition negated excitation with tone bursts that exceeded the optimum duration. Additionally, however, bandpass selectivity arose from stimulus-dependent excitation; tone bursts of sufficiently long duration were required to elicit excitation. Similarly, long-pass neurons showed inhibition and duration-dependent enhancement of excitation; long-pass selectivity resulted from enhanced excitation outlasting the transient inhibition or, in some cases, excitation overriding concurrent inhibition. Last, we evaluated the stimulus specificity of duration-selective neurons to variations in pulse repetition rate. We show that (1) most neurons that exhibited long-pass selectivity for tone-burst duration nonetheless responded to short-duration pulses when repeated at particular rates, and (2) some neurons that showed selectivity for tone burst duration also showed selectivity for pulse train duration. These novel response profiles appear to result from interplay between inhibition and time- and activity-dependent changes in excitation strength. These findings are discussed in the context of prevailing models of duration selectivity and acoustic communication in anurans.
منابع مشابه
Time computations in anuran auditory systems
Temporal computations are important in the acoustic communication of anurans. In many cases, calls between closely related species are nearly identical spectrally but differ markedly in temporal structure. Depending on the species, calls can differ in pulse duration, shape and/or rate (i.e., amplitude modulation), direction and rate of frequency modulation, and overall call duration. Also, beha...
متن کاملCounting on inhibition and rate-dependent excitation in the auditory system.
The intervals between acoustic elements are important in audition. Although neurons have been recorded that show interval tuning, the underlying mechanisms are unclear. The anuran auditory system is well suited for addressing this problem. One class of midbrain neurons in anurans responds selectively over a narrow range of pulse-repetition rates (PRRs) and only after several sound pulses have o...
متن کاملMechanisms of long-interval selectivity in midbrain auditory neurons: roles of excitation, inhibition, and plasticity.
Stereotyped intervals between successive sound pulses characterize the acoustic signals of anurans and other organisms and provide critical information to receivers. One class of midbrain neuron responds selectively when pulses are repeated at slow rates (long intervals). To examine the mechanisms that underlie long-interval selectivity, we made whole cell recordings, in vivo, from neurons in t...
متن کاملDuration tuning across vertebrates.
Signal duration is important for identifying sound sources and determining signal meaning. Duration-tuned neurons (DTNs) respond preferentially to a range of stimulus durations and maximally to a best duration (BD). Duration-tuned neurons are found in the auditory midbrain of many vertebrates, although studied most extensively in bats. Studies of DTNs across vertebrates have identified cells wi...
متن کاملWhole-cell patch-clamp recording reveals subthreshold sound-evoked postsynaptic currents in the inferior colliculus of awake bats.
The inferior colliculus receives excitatory and inhibitory input from parallel auditory pathways that differ in discharge patterns, latencies, and binaural properties. Processing in the inferior colliculus may depend on the temporal sequence in which excitatory and inhibitory synaptic inputs are activated and on the resulting balance between excitation and inhibition. To explore this issue at t...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- The Journal of neuroscience : the official journal of the Society for Neuroscience
دوره 28 21 شماره
صفحات -
تاریخ انتشار 2008